User Contributed Dictionary
Noun
hydrocarbons- Plural of hydrocarbon
Extensive Definition
In organic
chemistry, a hydrocarbon is an organic compound consisting
entirely of hydrogen
and carbon. With relation
to chemical terminology, aromatic
hydrocarbons or arenes, alkanes, alkenes and alkyne-based compounds composed
entirely of carbon or hydrogen are referred to as "pure"
hydrocarbons, whereas other hydrocarbons with bonded compounds or
impurities of sulphur or nitrogen, are referred to as "impure", and
remain somewhat erroneously referred to as hydrocarbons.
Hydrocarbons are referred to as consisting of a
"backbone" or "skeleton" composed entirely of carbon and hydrogen and other bonded
compounds, and lack a functional
group that generally facilitates combustion without adverse
effects.
The majority of hydrocarbons found naturally
occur in crude oil, where decomposed organic matter provides an
abundance of carbon and hydrogen which, when bonded, can catenate to form seemingly
limitless chains.
Types of hydrocarbons
The classifications for hydrocarbons defined by IUPAC nomenclature of organic chemistry are as follows:- Saturated hydrocarbons (alkanes) are the most simple of the hydrocarbon species and are composed entirely of single bonds and are saturated with hydrogen; they are the basis of petroleum fuels and are either found as linear or branched species of unlimited number. The general formula for saturated hydrocarbons is CnH2n+2 (assuming non-cyclic structures).
- Unsaturated hydrocarbons have one or more double or triple bonds between carbon atoms. Those with one double bond are called alkenes, with the formula CnH2n (assuming non-cyclic structures). Those containing triple bonds are called alkynes, with general formula CnH2n-2.
- Cycloalkanes are hydrocarbons containing one or more carbon rings to which hydrogen atoms are attached. The general formula for a saturated hydrocarbon containing one ring is CnH2n
- Aromatic hydrocarbons, also known as arenes, are hydrocarbons that have at least one aromatic ring.
Hydrocarbons can be gases (e.g. methane and propane), liquids (e.g. hexane and benzene), waxes or low melting
solids (e.g. paraffin wax
and naphthalene) or
polymers (e.g. polyethylene, polypropylene and polystyrene).
General properties
Because of differences in molecular structure, the empirical formula remains different between hydrocarbons; in linear, or "straight-run" alkanes, alkenes and alkynes, the amount of bonded hydrogen lessens in alkenes and alkynes due to the "self-bonding" or catenation of carbon preventing entire saturation of the hydrocarbon by the formation of double or triple bonds.This inherent ability of hydrocarbons to bond to
themselves is referred to as catenation, and allows
hydrocarbon to form more complex molecules, such as cyclohexane, and in rarer
cases, arenes such as benzene. This ability comes from
the fact that bond character between carbon atoms is entirely
non-polar, in that the distribution of electrons between the two
elements is somewhat even due to the same electronegativity values
of the elements (~0.30), and does not result in the formation of an
electrophile.
Generally, with catenation comes the loss of the
total amount of bonded hydrocarbons and an increase in the amount
of energy required for bond cleavage due to strain exerted upon the
molecule; in molecules such as cyclohexane, this is referred to as
ring
strain, and occurs due to the "destabilized" spatial electron
configuration of the atom.
In simple chemistry, as per valence
bond theory, the carbon atom must follow the "4-hydrogen rule",
which states that the maximum number of atoms available to bond
with carbon is equal to the number of electrons that are attracted
into the outer shell of carbon. In terms of shells, carbon consists
of an incomplete outer shell, which comprises 4 electrons, and thus
has 4 electrons available for covalent or dative bonding.
According thermodynamics studies hydrocarbons are
stable in great depths within the earth. Hydrocarbons also have
great abundance in the universe. In Titan (a Saturn moon) there are
lakes and seas of liquid methane and ethane confirmed by
Cassini-Huygens Mission.
Simple hydrocarbons and their variations
Usage
Hydrocarbons are one of the Earth's most important energy resources. The predominant use of hydrocarbons is as a combustible fuel source.Mixtures of volatile hydrocarbons are now used in
preference to the chlorofluorocarbons
as a propellant for
aerosol
sprays, due to chlorofluorocarbons impact on the ozone
layer.
Burning hydrocarbons
mainarticle Combustion Hydrocarbons are currently the main source of the world’s electric energy and heat sources (such as home heating) because of the energy produced when burnt. Often this energy is used directly as heat such as in home heaters, which use either oil or natural gas. The hydrocarbon is burnt and the heat is used to heat water, which is then circulated. A similar principle is used to create electric energy in power plants.As methane only releases one carbon dioxide for
two water molecules, it is considered the cleanest fuel.
Petroleum
Liquid geologically-extracted hydrocarbons are referred to as petroleum (literally "rock oil") or mineral oil, while gaseous geologic hydrocarbons are referred to as natural gas. All are significant sources of fuel and raw materials as a feedstock for the production of organic chemicals and are commonly found in the Earth's subsurface using the tools of petroleum geology.The extraction of liquid hydrocarbon fuel from a
number of sedimentary
basins has been integral to modern energy
development. Hydrocarbons are mined from tar sands,
oil
shale and potentially extracted from sedimentary methane
hydrates. These reserves require distillation and upgrading to
produce synthetic
crude and petroleum.
Oil reserves
in sedimentary rocks are the principal source of hydrocarbons for
the energy, transport
and petrochemical
industries. Hydrocarbons are of prime economic importance because
they encompass the constituents of the major fossil fuels
(coal, petroleum, natural gas,
etc.) and plastics,
paraffin, waxes, solvents and oils. In urban
pollution, these
components--along with NOx and sunlight--all contribute to the
formation of tropospheric
ozone.
See also
Notes
References
- McMurry, J. (2000). Organic Chemistry 5th ed. Brooks/Cole: Thomson Learning.
- Clayden, J., Greeves, N., et al. (2000) Organic Chemistry Oxford.
External links
hydrocarbons in Arabic: هيدروكربون
hydrocarbons in Bulgarian: Въглеводород
hydrocarbons in Catalan: Hidrocarbur
hydrocarbons in Czech: Uhlovodíky
hydrocarbons in Welsh: Hydrocarbon
hydrocarbons in Danish: Kulbrinte
hydrocarbons in German: Kohlenwasserstoffe
hydrocarbons in Estonian: Süsivesinikud
hydrocarbons in Spanish: Hidrocarburo
hydrocarbons in Esperanto: Hidrokarbono
hydrocarbons in Persian: هیدروکربن
hydrocarbons in French: Hydrocarbure
hydrocarbons in Irish: Hidreacarbón
hydrocarbons in Galician: Hidrocarburo
hydrocarbons in Hindi: हाइड्रोकार्बन
hydrocarbons in Korean: 탄화수소
hydrocarbons in Croatian: Ugljikovodici
hydrocarbons in Ido: Hidrokarbido
hydrocarbons in Indonesian: Hidrokarbon
hydrocarbons in Icelandic: Kolvetni
hydrocarbons in Italian: Idrocarburi
hydrocarbons in Hebrew: פחמימן
hydrocarbons in Latvian: Ogļūdeņraži
hydrocarbons in Lithuanian:
Angliavandenilis
hydrocarbons in Macedonian: Јаглеводород
hydrocarbons in Malay (macrolanguage):
Hidrokarbon
hydrocarbons in Mongolian: Нүүрсустөрөгч
hydrocarbons in Dutch: Koolwaterstof
hydrocarbons in Japanese: 炭化水素
hydrocarbons in Norwegian: Hydrokarbon
hydrocarbons in Norwegian Nynorsk:
Hydrokarbon
hydrocarbons in Polish: Węglowodór
hydrocarbons in Portuguese: Hidrocarboneto
hydrocarbons in Romanian: Hidrocarbură
hydrocarbons in Russian: Углеводороды
hydrocarbons in Simple English:
Hydrocarbon
hydrocarbons in Slovak: Uhľovodík
hydrocarbons in Slovenian: Ogljikovodiki
hydrocarbons in Serbian: Угљоводоник
hydrocarbons in Sundanese: Hidrokarbon
hydrocarbons in Finnish: Hiilivety
hydrocarbons in Swedish: Kolväte
hydrocarbons in Tamil: ஹைடிரோகார்பன்
hydrocarbons in Thai: ไฮโดรคาร์บอน
hydrocarbons in Vietnamese: Hyđrocacbon
hydrocarbons in Turkish: Hidrokarbon
hydrocarbons in Ukrainian: Вуглеводні
hydrocarbons in Chinese: 烃